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Collective emergent intelligence

The group level (intelligent) behavior that emerges through the
interactions of collection of individuals

* Biological neural networks, immune system, animals societies,

What are the local rules that allow the emergence of intelligent
group level behavior?

* Discovering and understanding (interpretability)

* Mimicking the Cl for solving computational tasks

How to communicate, specialize, divide the labor and cooperate?




Social learning strategies

How to learn efficiently as a population?
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Biologically inspired learning

How to learn without a global loss function?
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Phoenix project (FET-Open H2020)

How to build swarm of sensor networks
to explore environments?
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Social nhorms

How can cooperation emerge in self-interested lifetime-learning agents?
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Distributed evolutionary learning
How to optimize networks using a distributed approach?
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(Yaman A. et al., 2022, in submission)

(Yaman A. et al., 2022, Under review)
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How to learn efficiently as a population?

Individual learning: can improve the behavior but involves a learning cost

Social learning (copying the behaviors of others): cannot innovate but
provides sample-efficient learning by reducing the learning cost

However, when to copy? (social information can be less accurate)
who to copy from? (identifying individuals with reliable knowledge)
Information is a public good, what about free-riding?

- Success-based: copy the most successful individual

- Conformist: copy the majority

Yaman A, Bredeche N, Caylak O, Leibo JZ, Lee SW. Meta-control of social learning strategies. 2022, PLOS Computational Biology



https://doi.org/10.1371/journal.pcbi.1009882

Evolutionary dynamics of social learning

(a) Binary decision-making task
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(b) Individual vs. conformist social learning
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What are the trade-offs of SL strategies?

(a) Binary decision-making task
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(b) SLSs on environments with low and high uncertainty
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Optimum distribution prediction uncertainty (ODPU)
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(@) and (b): 0,=0.4,0, =0.2and 0,=0.2,0, =04

(c) and (d) show the ODPU, formalized as the probability of sampling the highest reward value from
the sub-optimum distribution

In (c) the ratios of optimum and sub-optimum: 0.05 and 0.95

In (d) the ratios of optimum and sub-optimum: are 0.5 and 0.5

(e) the relation between the ODPU and the difference in average rewards



Reward distributions
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Learning division of labor in self-interested lifetime
learning agents

(a) Spatial role distribution  (b) Settlement maintenance (c) Common pasture
on grid environment _ _
Roles (p) rt(i’j) Roles (p) rt(i'j)
Cleaner (C) 0 Worker (W) 0

Forager (F) 3 Herder (C - considerate) | 5

Hunter (H) 6, if 5 or more hunters,

Herder (G - greed 10
0, otherwise. (G-¢g V)

Soldier (S) 0 Role functions

. W: increases speed of resource recovery
Neighborhood (N) Role functions

£f | ] C: mitigates waste accumulation
ot focal agent: L,J S: protects against adversarial attacks




Learning division of labor in self-interested lifetime
learning agents

without social sanctions
(selfish)

- Social sanctions == Centralized = Altruists

Roles (p) (&) :
"t — Selfish/Altruists Selfish

Cleaner (C) 0
Forager (F) 3
Hunter (H) 6, if 5 or more hunters,
0, otherwise. with social sanctions

Soldier (S) 0

Role functions
* C: mitigates waste accumulation
* S: protects against adversarial attacks

Average group payoff
'® ge group pay )

Time step




Settlement maintenance Common pasture
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Future directions

* Social learning, cultural evolution and social norms
* Emergence of language/communication

 Human-Al interaction/cooperation

Thank youl!



