THE AWKWARD REAL-TIME ADJUSTMENT OF REACTIVE PLANS

Leila Methnani, Andreas Antoniades and Andreas Theodorou

leila.methnani@cs.umu.se

AGENDA

- Hybrid architecture: AWKWARD
- Implementation in DOTA2
- Results
- On-going extensions

LONG TERM MOTIVATION

- Behaviour adjustment to satisfy social obligation in multi-agent setting.
- Multi-agent interactions can be difficult to interpret.
- Human control; leverage human knowledge about the problem.

Can we achieve real-time adjustment of reactive plans with the added benefit of transparency into social interactions between agents?

Can we achieve real-time adjustment of <u>reactive plans</u> with the added benefit of transparency into social interactions between agents?

SYMBOLIC MEETS BEHAVIOUR-BASED AI

- **OperA** framework for developing MAS.
- Offers transparency by modelling the agent interactions.
- Deontic logic norm validation.
- Real-time adjustment.

Dignum, V. (2004). *A model for organizational interaction: based on agents, founded in logic.* PhD thesis.

- Behaviour Oriented Design cognitive architecture.
- Handles uncertainty in the environment.
- Modularity and agile methodology.
- Used in embodied agents.

Bryson, J. J. (2001). *Intelligence by design: Principles of modularity and coordination for engineering complex adaptive agents*. PhD thesis,

UMEÅ UNIVERSITY

222

AGENTS WITH KNOWLEDGE ABOUT REAL-TIME DUTIES

Methnani, L., Antoniades, A., & Theodorou, A. (2022). Embracing AWKWARD! Real-time Adjustment of Reactive Planning Using Social Norms. *arXiv preprint* UME. *arXiv:2204.10740*.

ve UMEÅ UNIVERSITY LEILA.METHNANI@CS.UMU.SE

AWKWARD

AWKWARD

222

Methnani, L., Antoniades, A., & Theodorou, A. (2022). Embracing AWKWARD! Real-time Adjustment of Reactive UMEÅ UNIVERSITY Planning Using Social Norms. arXiv preprint arXiv:2204.10740. LEILA.METHNANI@CS.UMU.SE

AWKWARD

222

Methnani, L., Antoniades, A., & Theodorou, A. (2022). Embracing AWKWARD! Real-time Adjustment of Reactive UMEÅ UNIVERSITY Planning Using Social Norms. arXiv preprint arXiv:2204.10740. LEILA.METHNANI@CS.UMU.SE

INTERACTION SCENE

- Landmarks indicating scene start and end.
- Roles involved in interaction.
- Rules for scene duration.
 - Deontic operators describing permissions and obligations for each role.

IF THEN
OBLIGED (role A, behaviour)
ELSE
NOT PERMITTED (role B, behaviour)
ENDIF

Dignum, V. (2004). A model for organizational interaction: based on agents, founded in logic. PhD thesis.

UMEÅ UNIVERSITY

NORM ENFORCEMENT

- Checks state using reactive planner's sense element.
- Agent behaviour compared against norms encapsulated by scene rules.
 - Upon norm violation, OperA manipulates agent's plan.
 - E.g., removing a drive that is not permitted within the specified context.

IMPLEMENTATION

DOTA 2

- Multiplayer real-time strategy game.
- Complex and dynamic environment.
- Varied hero abilities; social agent interaction is key.

FARMING BEHAVIOUR

INTERACTION SCENES

Table 3: Interaction Scene for Priority Lane Farming		
sce	ne	priority lane farming
role	es	carry and support
lan	dmarks	partner and creeps nearby
results		partner not nearby
rules		IF highest priority around THEN
	20	OBLIGED to farm
	rules	ELSE
		NOT PERMITTED to farm
		NUT PERMITTED to farm

Position 5

SOCIAL INTERACTION

- OperA 'Priority Farm' Scene is running.
- Enforcing the 'No Farm' Norm for hero of lower priority, i.e. Witch Doctor: Position 5.
- Harassing enemy heroes instead.

IN-GAME RESULTS

Methnani, L., Antoniades, A., & Theodorou, A. (2022). Embracing AWKWARD! Real-time Adjustment of Reactive Planning Using Social Norms. *arXiv preprint* UME *arXiv:2204.10740*.

ve UMEÅ UNIVERSITY LEILA.METHNANI@CS.UMU.SE

OUT-OF-SCENE VS IN-SCENE PLAN STRUCTURES

IS THERE A BETTER STRUCTURE?

ONGOING EXTENSIONS

PROBLEM FORMULATION

• Episode:

• Duration of an interaction scene.

• Goal (social outcome):

• Maximise Position 1 gold acquisition.

• Reward system:

- Increased position 1 gold = +50
- Increased self gold = +10
- Otherwise = +0

PRELIMINARY RESULTS

RESULTS

Position 1Position 5

CONSIDERATIONS

- Well, if we can induce the same (or an even better) outcome without RL ... why use it?
- Larger action-state space → automating plan structures become more useful.
- State representation and shaping the reward function matters; more study is needed here.

MODULE DESIGN

- Feature extraction
 - $_{\odot}$ What state variables are relevant?
- Reward shaping
 - What supplemental rewards can motivate the big payoff?

CHALLENGES

- State-action space complexity.
 - \circ Sample efficiency.
 - Training time.
- Designing a suitable reward.
- Reproducibility.

FUTURE WORK

- Expand the scope:
 - Interaction Scenes.
 - Behaviour Drives.
- User studies for transparency.
- Optimise the DQN.
- Include a human in the loop (both as module and as interactive RL).
- Packaging as an educational/research platform.

HMIEAI?

- New, "weird" \rightarrow AWKWARD (hybrid).
- Interpretable, practical, useful → motivator for design choices.
- AI is not just machine learning ... but it is also machine learning → somewhat "plug and play".

THANK YOU

Questions?

