
April 2022

Suffix-based Finite Automata for
Learning Explainable Attacker Strategies

Azqa Nadeem a,1, Sicco Verwer a and Shanchieh Jay Yang b

a Delft University of Technology, The Netherlands
b Rochester Institute of Technology, United States

Abstract

Learning about attacker behavior, such as their tactics, techniques and procedures (TTPs)
is largely a manual and expert knowledge-driven task in defensive cybersecurity. An at-
tack graph is a graphical representation of attacker strategies that shows all the pathways
an attacker can use to penetrate a network. Existing techniques correlate system vulner-
abilities and expert input regarding network topology to construct attack graphs, thus
providing a static and hypothetical view of the threat landscape. These traditional attack
graphs cannot directly be used to monitor ongoing attacks in Security Operations Cen-
ters (SOCs) since they do not show the dynamic strategies being employed by the attack-
ers. Meanwhile, SOC analysts defend against cyber attacks by monitoring millions of
intrusion alerts on a daily basis2, often leading to ‘alert fatigue’ and reduced productivity.

In the accepted paper [1], we propose a novel paradigm of attack graphs, known as
‘alert-driven attack graphs’, that are learned directly from intrusion alerts without any
expert input. Thus, instead of investigating large volumes of alerts, SOC analysts can vi-
sualize a few alert-driven attack graphs to understand the corresponding attacker strate-
gies. Utilizing machine learning to extract alert-driven attack graphs, the following con-
straints must be addressed: 1) Alert-type imbalance: Severe alerts are infrequent, while
non-severe alerts (e.g., related to network scans) are common. Frequency-analysis meth-
ods discard infrequent events as noise, making most machine learning methods unsuit-
able for this application. 2) Modeling context: The same alert signature may be involved
in different attacker strategies. This is indicated by the neighboring alerts, which can be
used to model an alert’s context so as to distinguish between similar attacker strategies.
3) Interpretable model: SOC analysts are often contractually obligated to investigate all
alerts, making black-box models inherently unsuitable since they do not let them reverse
engineer the alerts behind a classifier decision.

The accepted paper proposes SAGE3 — an interpretable sequence learning pipeline
that constructs attack graphs from the actions observed through intrusion alerts, without

1Corresponding Author: Azqa Nadeem, Department of Intelligent Systems, Delft University of Technology,
2628 XE Delft, Netherlands; E-mail: azqa.nadeem@tudelft.nl.

2https://www.imperva.com/blog/27-percent-of-it-professionals-receive-more-than-1-million-security-
alerts-daily/

3SAGE is open-source: https://github.com/tudelft-cda-lab/SAGE



April 2022

a priori expert knowledge. SAGE models the temporal and probabilistic relationships
between alerts in a suffix-based probabilistic deterministic finite automaton (S-PDFA)
using the FlexFringe [2] automaton learning framework. Individual attack graphs are
then extracted from the S-PDFA for each objective obtained on the victim host(s). The
S-PDFA at the heart of SAGE addresses the aforementioned constraints. i) Alert-type
imbalance: A suffix-based model is specifically chosen to highlight infrequent alerts,
without discarding any low-severity alerts. In our implementation, the severe alerts al-
ways appear at the end of the sequences, making a suffix-based model a natural choice.
ii) Modeling context: The S-PDFA state identifiers capture the alert context. Using the
Alergia heuristic [3] for state merging, states having similar futures and pasts are merged,
while those leading to significantly different outcomes are not. iii) Interpretable model:
The Markovian properties of the S-PDFA, together with Sink states4 make the model
components interpretable. The Markovian property ensures that the input transition sym-
bols of a state are unique, making it easier to interpret the meaning of a state. Here, the
states correspond to the milestones achieved by an attacker. Moreover, the deterministic
nature of the S-PDFA makes it algorithmically transparent. The parameters of the model
are selected through trial-and-error of visualizing the S-PDFA until it matches our intu-
ition about the data, making it design transparent. The attack graphs extracted from the
S-PDFA are also transparent, interpretable, and scientifically explainable.

Tested with intrusion alerts collected through three different security testing com-
petitions, we evaluate SAGE’s efficacy on distributed, multi-stage attack scenarios. The
competitions host several multi-member teams that exploit a common fictitious network.
For each competition, a minimal set of network-agnostic features is derived from the re-
sulting intrusion alerts, which is given as input to SAGE. SAGE uses constant parameters
for all datasets, as outlined in [1]. Collectively for the three datasets, SAGE compresses
over 1425k alerts into 401 attack graphs that show how specific attacks transpired. The
attack graphs capture the strategies used by the participating teams, producing directly
relevant insights for SOC analysts, e.g., they reveal that attackers follow shorter paths
to re-exploit objectives in 84.5% of the cases. This finding is backed by common-sense
intuition that if an attacker already knows how to exploit an objective, they would skip
the unnecessary hit-and-trial steps for re-exploitation. The attack graphs also provide an
intuitive layout to compare attacker strategies, which allow to reason about easily ex-
ploitable objectives (depicted by shared strategies), and fingerprintable paths (depicted
by strategies only employed by a single attacker).

As follow-up, we are investigating how to use alert-driven attack graphs for proactive
defense. Specifically, how the S-PDFA can be used to predict next attack steps.

References

[1] Nadeem A, Verwer S, Moskal S, Yang SJ. Alert-driven Attack Graph Generation using S-PDFA. IEEE
Transactions on Dependable and Secure Computing. 2022;19(2):731-46.

[2] Verwer S, Hammerschmidt CA. Flexfringe: a passive automaton learning package. In: 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). IEEE; 2017. p. 638-42.

[3] Carrasco RC, Oncina J. Learning stochastic regular grammars by means of a state merging method. In:
International Colloquium on Grammatical Inference. Springer; 1994. p. 139-52.

4Sinks are states that occur too infrequently to learn from. We remove low-severity sinks from the model.


